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Abstract: We study the thermodynamical phase structures of holographic QCD with

nontrivial topologically charged domain-wall/membranes which are originally related to

the multiple θ-vacua in the large Nc limit. We realize the topologically charged mem-

branes as the holographic D6-brane fluxes in the Sakai-Sugimoto model. The D6-brane

fluxes couple to the probe D8-D8 via Chern-Simon term, and act as the source for the

baryonic current density of QCD. We find rich phase structures of the dual meson system

by varying asymptotic separation of D8 and D8. Especially, there can be a thermody-

namically favored and stable phase of finite baryonic current density. This provides the

supporting evidence for the discovery of the topologically charged membranes found in

the lattice QCD calculations. We also find a crossover phase with the limiting baryonic

current density and temperature which suggest a Hagedorn-like phase transition of meson

dissociation.
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1. Introduction

One of the important issues in QCD is to understand its vacuum structure. The non-

perturbative vacua such as the ones dominated by the instanton configurations [1] are

relevant in many aspects of QCD. For example, it was proposed that the instanton is

related to the axial U(1) anomaly and yields large η′ mass [2]. However, the effect of

dilute instanton gas is e−Nc and negligible in the large Nc limit. To account for such

a discrepancy, a co-dimensional one object of continuous topological charge distribution,

namely, the topologically charged membrane1 was proposed in [3, 4], and later on realized as

the D6-brane in the context of AdS/CFT correspondence [5]. Interestingly, in parallel with

the Wilson loop summarizing the Schwinger effect in the CPn model, Lüscher proposed

in [4] a Wilson bag term for a 3-form potential C3 over a 3-dimensional hypersurface to

characterize the pair production rate of the topological domain wall, i.e.,

〈ei e
π

H

Σ C3〉θ=0 ∝ e−V4

R 2πe
0 dθ′F (θ′) (1.1)

where F (θ) = −i 1
32π2 〈trFF̃ 〉θ is the topological charge density with respect to θ-vacuum,

Cµνρ = −tr(AµAνAρ + 3
2A[µ∂νAρ]) is an abelian gauge field of fourth kind such that

4ǫαβγδ∂[αCβγδ] = trFF̃ . The 3-dimensional closed hypersurface Σ with enclosed 4-

volume V4 describes the history of the pair creation and annihilation of the topologically

charged membranes. This is the generalization of the Coleman-Schwinger effect for (1+1)-

dimensional quantum electrodynamics [6].

Typically, a 3-form potential is sourced by some charged membranes and will create

a long-range Coulomb-type constant force in the ambient (3+1)-dimensional Minkowski

space [7]. If the force further couples to light particles, then the Schwinger-like pair pro-

duction will diminish the 3-form potential and its production rate can be described by (1.1).

1In the literatures it is usually called topologically charged domain wall. In this paper we prefer to call

it topologically charged membrane.
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However, the 3-form potential C3 is not an elementary field but a composite one sourced

by the topologically charged membranes, it is not clear how it couples to the pair-produced

light fields. Later, we will see that the 3-form potential will couple to the baryonic current

from the holographic Chern-Simon term.

For finite Nc, the lattice QCD is reliable and practical to explore the non-pertubative

QCD phenomenon. Implementing the lattice chiral symmetry and the associated topo-

logical charge density operator, the evidence for the topologically charged membranes in

pure-glue SU(3) lattice gauge theory has been reported in [8]. Guided by the non-positivity

of the two-point function of the topological charge density at non-zero distance [9], which

rules out the instanton gas, they found that the dominated configuration in the vacuum is

permeated by two oppositely charged sign-coherent connected structures (“sheet”). Each

sheet is built from elementary 3D cubes connected through 2D surface.

On the other hand, it is believed that this topologically charged membrane is related to

closely juxtaposed dipole-like D6-D6-branes in the holographic QCD model [5, 10] without

considering its effect on the hadron dynamics. The holographic QCD model has been

generalized by Sakai-Sugimoto [12, 13] to include the hadron physics by using the D4-D8-

D8 brane configuration to capture the quark dynamics. This model is based on Witten’s

model for 4-dimensional pure Yang-Mills theory by wrapping Nc D4-branes on a Scherk-

Schwarz circle [11], and then putting additional probe Nf D8 and D8-branes transverse

to the circle. The open strings connecting D4 and D8 or D8 then provide the chiral

fermions as quarks in the fundamental representation of both the gauge group U(Nc)

and the flavor group U(Nf )L × U(Nf )R. In the strongly coupled regime in the large Nc

limit, the D4-branes are condensed into Witten’s geometry [11], which is of cigar-shape

so that the D8 and D8 are curved and smoothly connected into U-shaped configuration

with an asymptotic separation L at infinity. The worldvolume theory of the probe D8-

brane in Witten’s geometry successfully realizes the meson and hadron physics [12, 13].

This U-shaped D8-D8 configuration geometrically realizes the spontaneous chiral symmetry

breaking at low energy. Besides that, the Sakai-Sugimoto model has also been generalized

to the deconfined phase [15].

Motivated by the appearance of the topologically charged membrane in the lattice

simulation [8] and its implication of Lüscher’s Wilson bag, it is interesting to study this

effect in the various phases of the Sakai-Sugimoto model. In this paper, we will realize

the topologically charged membranes by the Ramond-Ramond (RR) 8-form fluxes, which

can be understood as condensate of the smeared D6-D6 branes. Interestingly, from the

Chern-Simon term of the probe D8-D8 branes, we find that the RR 8-form will couple

to the spatial component of the U(1) part of the flavor gauge field, which is holographic

dual to the coupling between Lüscher potential C3 and the baryonic current. Moreover,

realizing the external baryonic fields as the D6-branes’ flux helps us to understand its back

reaction to the D8-D8 probe branes’ shape, and remove the singular chemical potential

configuration. This makes possible the exploration of the full parameter space of the

phase diagram of Sakai-Sugimoto model with nontrivial vacuum dominated by topolog-

ically charged membranes. Similar story has happened in introducing the finite baryon

number density in Sakai-Sugimoto model [19], our investigation for relation between the

– 2 –



J
H
E
P
0
9
(
2
0
0
8
)
0
4
6

topologically charged membrane and the baryonic current will follow the same line.

Recently, the baryonic current coupled to the external baryonic electric field in Sakai-

Sugimoto model has been considered in [18], where the baryonic Ohm’s law for the decay

of the baryonic electric field is identified and can be understood as the Schwinger effect.

Instead, we find that there is no imaginary part in D8’s DBI action, and the topologically

charged membranes realized as the D6-branes’ fluxes are dynamically stable. Therefore,

the Schwinger effect as suggested in [4] or [5] through the nucleation of the baryonic current

is absent for topologically charged membrane. However, we find very rich phase structures

of thermodynamics.

The paper is organized as following. In the next section we give configuration of the

source D6-brane fluxes as the holographic dual of the topologically charged membranes

in QCD. Especially our configuration will couple to boundary baryonic current density

and yield non-trivial thermodynamics. In section 3 the cusp configuration of probe D8-

D8 in the confined phase is solved, its holographic thermodynamic is derived and the

phase structures are displayed. We find that there are rich phase structures as we vary

the asymptotic separation of D8 and D8. For example, we find a crossover phase with

a limiting baryonic current density indicating a Hagedorn-like phase transition of meson

dissociation, i.e. quark deconfinement. More important, there exists stable topologically

charged membranes which support the lattice QCD’s results in [8]. Similar considerations

for the high temperature phase of holographic QCD are done in section 4 in which there

are more rich phase structures due to the additional temperature dependence. Finally we

conclude our paper in section 5.

2. The topologically charged membranes in Sakai-Sugimoto model

The holographic dual of 4-dimensional, large Nc QCD with massless flavors was proposed

in [12, 13]. This model is constructed by embedding Nf D8-D8 probe branes in the D4-

brane background. In addition, we will also turn on the condensed N6 D6-branes as the

topologically charged membranes. The brane setting is arranged as following:

0 1 2 3 (4) 5 6 7 8 9

Nc D4 × × × × ×
Nf D8-D8 × × × × × × × × ×
N6 D6 × × × × × × ×

The dual QCD lives on R4 spanned by the coordinates x0 to x3 where the above D6s look

like the co-dimension one domain wall/membranes. For simplicity, we will only consider

the topologically charged membrane with x3 as its transverse direction. Furthermore,

we will smear the D6-brane fluxes along the x3-direction uniformly, which represents an

uniform topologically charged membrane distribution. In the above brane setting, the D4

and D6-branes are condensed into geometric background but with the D8-D8 as the probe

brane whose worldvolume theory will capture the essence of QCD’s meson physics [12].

Moreover, we assume

N6 ≪ Nf ≪ Nc, (2.1)

– 3 –
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to suppress D6s’ back-reaction to the D4 background and also its contribution to the

vacuum energy of the dual meson’s (thermo-)dynamics of D8-D8.

As the supergravity background, the above D6-brane fluxes satisfy the source equation2

∂U (
√−gFU0126789) = J6 (2.2)

where U is the radial coordinate of Witten’s geometry. The explicit form of the D6-

fluxes F8 is determined by the D6-brane source J6. To have an energy-scale-independent

thermodynamics of the holographic QCD, it turns out that we have to introduce the D6-

fluxes in the following form

F8 = N6 δ(U − Uc)dx
0 ∧ dx1 ∧ dx2 ∧ dU ∧ dΩ4 (2.3)

where the D6-branes are uniformly smeared along the x3-direction.3 We then plug the F8

of (2.3) into source equation (2.2) to deduce the source J6. From the term ∂U δ(U − Uc)

we can see the leading terms of J6 contain both positive and negative singular charge

density at U = Uc. This implies a closely packed D6-D6 pair located at U = Uc. This

is consistent with the lattice result in [8] in which appears a vacuum with two oppositely

charged sign-coherent connected structures (“sheet”).

Before we continue, we should make sure the D6-fluxes will not cause large back

reaction to the D4-branes’ background metric. To check this, we only need to compare

the on-shell actions of the D4 and D6-fluxes. The ratio of D6 to D4’s kinetic terms (in

string frame) is
F 2

8

F 2
4

∼ N2
6

N2
c

[δ(U − Uc)]
2 (2.4)

where the 4-form fluxes F4 is sourced by the Nc D4-branes, and we have omitted the

irrelevant power of U factor. With the assumption (2.1), the D6s’ kinetic term is

1/N2
c suppressed if we firstly regularize the singular profile (2.3) and then take large

Nc limit. Moreover, in this way the D6-fluxes will not add the vacuum energy to the

(thermo-)dynamics of the dual meson system of D8-D8.

Given (2.3) we can obtain a Hodge dual 2-form F̂34, which is associated with an axion

â4 by F̂34 := ∂3â4−∂4â3. The axion couples to the topological charge density of dual QCD

∫

S×R4

â4 trFF̃ . (2.5)

At the same time, the θ parameter of dual QCD vacuum can be defined as

θ = lim
U→∞

∫

dx4â4 =

∫ ∞

UKK

dU

∫

dx4F̂U4 (2.6)

which we have used the Stokes theorem. Note that this yields zero value of θ for our D6-

fluxes since F̂U4 = 0 by construction. This is in contrast to the case considered in [5, 23]

2In this paper, we consider field equations in the string frame.
3A smooth U -profile D6-fluxes may introduce inhomogeneous current density profile along U -direction,

this is beyond the scope of simple thermodynamics considered in this paper.
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in which a D6’s 2-form F̂U4 = n6/U
4 corresponding to J6 = 0 in (2.2) is used, so that the

θ parameter is nonzero and finite.

In Sakai-Sugimoto model, the meson dynamics is described by the DBI action of the

probe D8-D8-branes with U(Nf ) gauge fields as the holographical dual of the meson fields.

Especially, the diagonal U(1) part of the flavor group is holographically related to the

baryonic current ψ̄aγµψa [18, 19]. Besides, we should also include the Chern-Simon term

SCS = T8

∫

Cp+1 ∧ tr(2πα′F )
(8−p)/2

(2.7)

if there are non-trivial RR-form fields Cp+1 generated by Dp-brane sources. In the presence

of above D6-branes acting as the topologically charged membranes in the holographic dual

QCD, the source Chern-Simon term to be incorporated is

SCS = T8

∫

C7 ∧ tr(2πα′F ) = NfT8

∫

F8 ∧ a3dx
3 (2.8)

where a3 ≡ 2πα′A3√
2Nf

is the x3-component of the diagonal U(1) part of the gauge field. As

usual, aµ can be considered as the chemical potential of the baryonic current. On the other

hand, if we identify â4 in (2.5) as the baryo-axion4 proposed in [7], i.e., F̂34 = ∗10F8, then

the suggestive form of (2.8) provides a holographic realization of the conjectured coupling

proposed in [7] between the baryo-axion and the baryonic current. In some sense, the

spontaneous baryonic current induced by the topologically charged membranes is analogous

to the one by the skyrmions.

3. Confined phase with topologically charged membranes

In this section, we will discuss the thermodynamics of Sakai-Sugimoto model in the confined

phase with topologically charged membranes discussed in the previous section. The main

idea of the Sakai-Sugimoto model is to realize the meson dynamics of strongly-coupled QCD

by probe D8-D8 branes in the Witten’s geometry of Nc non-extremal D4-branes, which is

holographically dual to strongly coupled large Nc Yang-Mills theory in the confined phase.

The Witten’s geometry of the D4-brane background describing QCD confined phase

is given by

ds2 =

(

U

R

)
3
2
(

ηµνdx
µdxν + f(U)(dx4)2

)

+

(

R

U

)
3
2
(

dU2

f(U)
+ U2dΩ2

4

)

(3.1)

F4 =
2πNc

Ω4
ǫ4, eφ = gs

(

U

R

)
3
4

, f(U) = 1 − U3
KK

U3
(3.2)

where µ, ν = 0, 1, 2, 3, and Ω4 = 8π2/3 and ǫ4 are the volume and volume form of the

internal unit S4. The parameter R is related to the string coupling and string length by

4Compactifying C7 in (2.8) on the internal 4-sphere of the Witten’s geometry of D4-branes, the reduced

3-form potential can be thought as the 4-dimensional Hodge dual of the baryo-axion, that is the field sourced

by the topologically charged membrane.
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R3 = πgsNcl
3
s , and the metric describes a throat geometry with the x4 circle smoothly

shrink to a tip at the IR endpoint U = UKK by requiring the period of x4 to be

4πR3/2/3U
1/2
KK ≡ 2π/MKK to avoid conical singularity. Moreover, the relations between

the gravity and the gauge theory quantities are

R3 =
g2
YMNcl

2
s

2MKK
, UKK =

2

9
g2
YMNcMKKl

2
s , gs =

g2
YM

2πMKKls
(3.3)

where gYM is the gauge coupling of the dual 4-dimensional Yang-Mills theory.

The Nf probe D8-D8-branes are embedded in such a way with x4-direction as the only

transverse direction, this yields the induced metric on its worldvolume as follows

ds2D8 =

(

U

R

)
3
2

ηµνdx
µdxν +

(

R

U

)
3
2

[(

(

U

R

)3

f(U)(∂Ux
4)2+

1

f(U)

)

dU2 + U2dΩ2
4

]

. (3.4)

The D8-D8 worldvolume dynamics is described by the usual DBI action with U(Nf )

gauge field as follows

SDBI = −NfT8

∫

d9xe−φ
√

− det(g + 2πα′F )

= −N
∫

dUU4

√

f(U)(∂Ux4)2 +

(

R

U

)3( 1

f(U)
+ (∂Ua3)2

)

(3.5)

where we have defined N ≡ Nf T8Ω4V3β
gs

where V3 =
∫

dx1dx2dx3 and β =
∫

dx0, and the

x3-component of the diagonal U(1) part of the gauge field a3 ≡ 2πα′A3√
2Nf

.

From the dictionary between the bulk and boundary quantities, for example the ones

given in [19] for the discussions of the finite holographic baryon number density, the bound-

ary value of the above bulk background gauge field a3 corresponds to the chemical potential

of the x3-component of the baryonic current of the dual QCD. The dual baryonic current

density can also be identified from the normalizable mode of a3.

Moreover, we should also add the Chern-Simon term (2.7) for the nonzero RR 8-from

(2.3) corresponding to the topologically charged membranes in the QCD vacuum. This

yields

SCS = N nb

∫

dUδ(U − Uc)a3(U) (3.6)

which acts as a source term for the boundary baryonic current. In the above, we cut off the

volume of the x3-direction to L3, and define the baryonic current density of the dual QCD by

nb ≡
NfT8N6L3

N
=

3

8π2

gsN6

V2β
, V2 ≡

∫

dx1dx2. (3.7)

Solving D8-D8 configuration with a cusp

The Euclidean on-shell action of the probe D8-brane will encode the thermodynamics of the

holographic QCD. To acquire the information, we need to solve the D8-brane configuration.

In flat space-time, the D8-brane will be straight and flat. However, due to the cigar

shape of Witten’s geometry, the probe D8-brane will force to bend into D8-brane at U0.

– 6 –
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Figure 1: Smooth D8-D8 D8-D8 with a cusp

Integrating (3.11) to get x4(U) with fixed asymptotic separation of D8 and D8, one will

get a U-shaped D8-D8-brane configuration, which presents the chiral symmetry breaking

of the dual QCD in a geometric way [12]. Moreover, once the D6-brane fluxes are turned

as (2.3), the above smooth U-shaped D8-D8 will then develop a cusp as shown in figure 1

due to the pulling of the force from the D6-brane source, which signifies the existence of a

new thermodynamical phase.5

We first solve the gauge field a3 from its equation of motion derived from the total

action of D8-D8, which is

Πa3 = N nb Θ(U − Uc), Uc > UKK (3.8)

where the properly normalized conjugate momentum to a3 is defined by

Πa3 ≡ δSDBI

δ(∂Ua3)
= −N UR3∂Ua3

√

f(U)(∂Ux4)2 +
(

R
U

)3
( 1

f(U) + (∂Ua3)2)
, (3.9)

and the step function on the right-handed-side comes from the delta function D6-fluxes

source encoded in (3.6).

From (3.9) we can get

∂Ua3 = − nb

UR3

√

√

√

√

f(U)(∂Ux4)2 + (R
U )3 1

f(U)

1 − n2
b

U5R3

, (3.10)

The above choice of the overall sign is to be consistent with (3.8) and (3.9).

On the other hand, there is no source term for the equation of motion of x4, we instead

need introduce an integration constant C. With the help of (3.10), we have

(∂Ux
4)2 =

(R
U )3C

(f(U))2(H(U) − C)
(3.11)

with

H(U) ≡ U8f(U)

(

1 − n2
b

U5R3

)

. (3.12)

5This is similar to the case of finite baryon number density, for example see the last reference in [19].
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The integration constant is assigned by relating it to the proper cusp angle

tan θc ≡
√

g44
gUU

∂Ux
4 |U=Uc (3.13)

and it yields

C ≡ U8
c f(Uc)

(

1 − n2
b

U5
cR

3

)

sin2 θc. (3.14)

To further integrate out (3.11) to obtain the full D8-D8 configuration we need one

more condition, which is to fix the asymptotic separation between D8 and D8

L = 2

∫ ∞

Uc

dU ∂Ux
4. (3.15)

Moreover, the size of the proper cusp angle θc can be determined by the force balance

condition between the D8-D8’s tension fD8 and the pulling of D6 fD6, i.e.,

fD8 + fD6 = 0. (3.16)

The proper tension of D8-D8 is obtained by varying its Hamiltonian density with

respect to the proper distance Uc along the D8 brane, that is,

fD8 =
1√
gUU

δHD8

δU
|U=Uc (3.17)

=
1√
gUU

[

−NH(Uc) +

∫ ∞

Uc

δHD8

δ(∂Ux4)

∂(∂Ux
4)

∂U
|U=Uc, with nb,L fixed

]

(3.18)

where the Hamiltonian density is the Legendre transformation of the DBI action (3.5) as

HD8 = −SDBI +

∫

dU Πa3∂Ua3 = N

∫ ∞

Uc

dU H
(

x4(U)
)

(3.19)

with

H
(

x4(U)
)

≡ U4

√

√

√

√

(

f(U)(∂Ux4)2 +

(

R

U

)3 1

f(U)

)

(

1 − n2
b

R3U5

)

. (3.20)

The resultant proper D8-D8 tension is6

fD8 = −NR 3
4U

13
4

c

√

1 − n2
b

U5
cR

3
cos θc. (3.22)

6While varying ∂Ux4 with Uc we should keep the asymptotic separation (3.15) fixed, this yields

∂Ux
4(Uc) =

Z

∞

Uc

∂(∂Ux4)

∂U
|U=Uc,with nb,L fixed dU (3.21)

from which we can evaluate the second term in (3.18) along with the Hamilton’s equation ∂U

“

δHD8

δ(∂U x4)

”

= 0.

– 8 –
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To obtain the pulling force of the D6-fluxes, we need to know the on-shell Chern-Simon

action which can be obtained by plugging (3.11) into (3.10), and then integrating it over

U to get a3(U). Resultantly,

SCS|on−shell = Nnba3(Uc) = N



a3(∞)nb +

∫ ∞

Uc

dU
n2

b

(

U
R

)
3
2

√

H(U) − C



 . (3.23)

Therefore, the force by D6 flux is

fD6 = − 1√
gUU

δSCS

δU
|U=Uc, with nb,L fixed= −N2 n

2
b

fD8

(

Uc

R

)
3
2

. (3.24)

Given the explicit form of fD8 and fD6, the force balance condition (3.16) yields

cos2 θc =

n2
b

U5
c R3

1 − n2
b

U5
c R3

. (3.25)

Absence of dynamical instability via tunneling

Though the factors
√

H(U) − C and

√

1 − n2
b

U5R3 appearing in the on-shell action seem

implying the possibility of dynamical instability via tunneling such as the Schwinger effect

if these factors are turned into complex. This usually happens for a DBI action with the

electric field larger than its maximal field strength. However, recall that we in fact turn

on not electric but magnetic field ∂Ua3 for the holographic baryonic current density. Thus,

we will not expect such a dynamical instability in our case. This is also in contrast to

the case considered in [19] for the finite holographic baryon number density, in which a

electric field FU0 is turned on in the DBI action, so there is a possible dynamical instability

for the Lorentzian configurations. Indeed, (3.25) implies
n2

b

U5
c R3 < 1/2 so that cos2 θc < 1

for a physical cusp configuration, thus the above factors are real for U > Uc and the

dynamical instability is absent. This implies a maximal baryonic current density nb <
√

U5
c R3

2 beyond which the cusp configuration cannot be sustained, and it could imply the

meson dissociation.

Thermodynamics of holographic QCD

From the usual thermodynamical and holographical interpretation of the Euclidean path

integral in the grand canonical ensemble at temperature T

∑

n

e−(En−µQn)/T = e−Ω(T,µ)/T := e−(E−µnb−TS)/T , (3.26)

we can identify the on-shell Euclidean total action as the Gibbs free energy density with

fixed chemical potential µ, i.e.,

Ω(µ;nb) = SE
DBI|on−shell + SE

CS|on−shell. (3.27)

– 9 –



J
H
E
P
0
9
(
2
0
0
8
)
0
4
6

The holographic chemical potential of the baryonic current in dual QCD is identified as as

the boundary value of gauge field, that is,

µ = Na3(∞) (3.28)

and the on-shell Euclidean Chern-Simon action differs from (3.23) by an overall minus sign,

together with the on-shell Euclidean DBI action obtained from (3.5), (3.10) and (3.11)

SE
DBI|on−shell = N

∫ ∞

Uc

dU
R

3
2U

13
2

√

H(U) − C
. (3.29)

Instead, we can also work in the canonical ensemble with fixed charge density nb by

performing the Legendre transformation to obtain the Helmholtz free energy density

F (T, nb) = E − TS = Ω + µnb (3.30)

and from (3.23) and (3.29) we obtain

F (nb) = N

∫ ∞

Uc

dU
R

3
2U

13
2

(

1 − n2
b

U5R3

)

√

H(U) − C
(3.31)

which is nothing but the on-shell value of the Hamiltonian density (3.19) and (3.20) as

expected from the definition of the Helmholtz free energy.7 Moreover, the relation between

chemical potential and charge density in the canonical ensemble can be obtained via8

µ(nb) =
dF

dnb
. (3.32)

Inverting this relation we can get Ω(µ) = Ω(µ, nb(µ)). Furthermore, the thermodynamical

stability is characterized by the baryonic current susceptibility

χ =
d2F

dn2
b

. (3.33)

If χ is positive, it is stable; otherwise, it is not.

7In the confined phase, the temperature dependence is trivial and its thermodynamics will be thought

as the zero temperature case.
8Or, we can vary the Hamiltonian density (3.19) so that

µ(nb) =
δHD8

δU
|U=Uc

·
dUc

dnb

+
∂HD8

∂nb

= N

p

gUU(Uc)fD8
dUc

dnb

+
∂HD8

∂nb

,

and obtain dUc

dnb
by varying the condition (3.15) over nb so that

dUc

dnb

=

R

∞

Uc
dU

∂(∂U x4)
∂nb

∂Ux4 |U=Uc
−

R

∞

Uc
dU

∂(∂U x4)
∂Uc

.

This is useful for numerical implementation.
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Phase structures

Since the condition (3.15) of fixed asymptotic separation is nontrivial so that it is impossible

to obtain the analytical form for the above thermodynamical quantities, instead we will

substitute the proper cusp angle by (3.25) and numerically solve Uc(nb) from (3.15) and

obtain the thermodynamical quantities. Moreover, we may expect rich phase structures due

to the factors such as
√

H(U) − C in the thermodynamical quantities. This is in contrast to

the simple phase structure considered in [19] for the case with non-zero holographic baryon

number density. In fact, the most peculiar we have found is that the thermodynamical

behaviors strongly depend on the value of the asymptotic separation L. As L is varied,

there are the following phases: (a) thermodynamically unfavored and unstable phase, (b)

thermodynamically favored and stable one, (c) thermodynamically unfavored but stable

one, and (d) crossover ones between the above phases. The feature of the rich phase

structures is quite similar to the one of holographic entanglement entropy characterized by

a critical asymptotic separation [16].

In our numerical computations we have set9

UKK = 0.5, R = 1 ⇒ L ≤ 2π

3

√

R3

UKK
≃ 2.96. (3.34)

Moreover, the thermodynamics for the confined phase for a given L can be just summarized

in two plots, one is µ v.s. nb, the other is ∆Ω v.s. µ, from which we can obtain ∆F (nb).

The ∆Ω is the difference of the Gibbs free energy between topologically charged membrane

state (nb 6= 0) and vacuum state (nb = 0). Similarly for ∆F (nb). It is also interesting to

see how the tip of cusp changes while varying nb from Uc(nb), however, we omit it in the

following because it is not relevant for thermodynamics.

Thermodynamically unfavored and unstable phase. The results of a typical case

with L = 0.4 for such a phase are summarized in figure 2–3. We can see that:

• ∆Ω in figure 3 is positive so that the phase is thermodynamically unfavored.

• Moreover, this phase is also thermodynamically unstable as can be seen from the

negative susceptibility derived from the slope of figure 2. This is also suggested by

the negativity of the chemical potential µ.

• In these plots, only the part with the baryonic current density nb > 0.2 is shown.

In our numerical results not shown in figure 2–3, we find that for very small nb the

Gibbs free energy is far higher and is thermodynamically unfavored. Therefore we

just show the parameter space with smaller ∆Ω region which is also more realizable

without numerical convergence problem. Similar situation happens for the other

cases of different L’s.

9We should caution the readers here. In this chosen set of units, the ’t Hooft coupling is not much

larger than one so that the SUGRA approximation is not good. However, it is conventionally used for

the numerical computations in the literatures [18, 19] with surprisingly good results in comparison with

experimental value.
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Figure 2: µ v.s. nb (L = 0.4) Figure 3: ∆Ω v.s. µ (L = 0.4)

Crossover phase. In between the thermodynamically unstable phase for L < 0.6 and

the stable ones for L > 0.7, there is a crossover as shown in figure 4–5 for L = 0.65. We

see that

• Two branches appear in figure 4 because there are two values of chemical potential

for a fixed baryonic current density.

• One branch is still thermodynamically unfavored and unstable, but the other is both

thermodynamically favored and stable as can be seen from figure 4 and 5.

• From figure 4 we see there exists a maximal value of nb at which the both chemi-

cal potential and susceptibility are divergent, and thus limiting. This is similar to

the limiting susceptibility for the Hagedorn phase transition [20, 14]. However, this

limiting baryonic current density is smaller than the one required by cos2 θc < 1 to

sustain the cusp configuration. This suggests that the cusp configuration cannot be

sustained for the smaller nb than expected, and the limiting behavior might be a sig-

nature for meson dissociation which bears Hagedorn-like behavior as expected. This

could be related to the similar Hagedorn behavior for the holographic entanglement

entropy considered in [16].

Therefore, our result shows that the topologically charged membranes can induce

quark deconfinement even at zero temperature.

• Another interesting feature for this phase is the sign change of the chemical potential

for baryonic current density as we vary L. This is different from the usual crossover

in QCD of finite baryon number density, for which there is no sign change of chem-

ical potential for baryon number density [21]. Instead, it reminds us the BCS-BEC

crossover in condensed matter system [22] where there is a sign change of chemical

potential from the BCS phase (µ > 0, weakly coupled) to the BEC phase (µ < 0,

strongly coupled) as the number density increases.

Thermodynamically favored and stable phase. One of the goal of this work is to

search for the new stable vacuum of large Nc QCD with non-trivial topologically charged

– 12 –
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Figure 4: µ v.s. nb (L = 0.65) Figure 5: ∆Ω v.s. µ (L = 0.65)

Figure 6: µ v.s. nb (L = 1) Figure 7: ∆Ω v.s. µ (L = 1)

membrane structure. The results of a typical case with L = 1 for such a phase are shown

in figure 6–7.

• ∆Ω in figure 7 is negative for the most of positive µ region, it implies this phase is

thermodynamically favored. It is interesting to see there is some unfavored region

for negative µ as the tail of the crossover.

• Moreover, this phase is also thermodynamically stable as can been from the positive

susceptibility derived from the slope of figure 6. Similarly, there is a small region of

negative susceptibility as the tail of the crossover.

• Therefore, there exists a thermodynamically favored and stable phase with non-zero

baryonic current density in the confined phase of holographic QCD. This provides

the supporting evidence to the finding of the topologically charged membranes in the

lattice QCD calculations reported in [8].

Thermodynamically unfavored but stable phase. As L goes higher, the positive

∆Ω part will gradually dominate the negative one, and finally we will end up at such a

phase where the negative ∆Ω part will disappear but it is still thermodynamically stable.

The typical results with L = 1.5 are given in figure 8–9, and this phase persists for larger
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Figure 8: µ v.s. nb (L = 1.5)
Figure 9: ∆Ω v.s. µ (L = 1.5)

L.10 It is straightforward to read off the thermodynamical behavior as before. Since ∆Ω

is small, it suggests that the topologically charged membranes may have quite a chance to

sustain in the vacuum even it is relatively unfavored.

In summary, as the asymptotic separation L of D8-D8 increases, the meson system

of the holographic QCD goes from a thermodynamically unfavored and unstable phase

through a crossover, and then becomes thermodynamically favored and stable. Finally,

it ends at a thermodynamically unfavored but stable phase. Such a rich phase structure

at zero-temperature system is expected for a strongly interacting theory as holographic

QCD. This is in contrast to the free theory with trivial thermodynamical phase at zero

temperature.

4. High temperature phase with topologically charged membranes

The background geometry dual to high temperature phase of QCD is obtained from the

metric (3.1) by wrapping the Euclidean time and x4 cycles as in the usual Witten’s cigar

like geometry for BTZ black hole [11, 14]. This was considered first in [15] and the resultant

(Euclidean) metric is11

ds2 =

(

U

R

)
3
2
(

f(U)dτ2 + δijdx
idxj + dx2

4

)

+

(

R

U

)
3
2
(

dU2

f(U)
+ U2dΩ2

4

)

(4.1)

where f(U) = 1 − U3
T

U3 , and the period of the Euclidean time direction is determined to be

4π

3

√

R3

UT
≡ β =

1

T
(4.2)

which is identified as the inverse temperature of the dual QCD. As for the confined phase,

the induced metric on the probe D8-D8 in the background (4.1) is

ds2D8 =

(

U

R

)
3
2
(

f(U)dτ2+δijdx
idxj

)

+

(

R

U

)
3
2

[(

(

U

R

)3

(∂Ux
4)2+

1

f(U)

)

dU2+U2dΩ2
4

]

. (4.3)

10Our numerical calculation is reliable up to L ≈ 2.2, for higher L we have serious convergence problem

since Uc is very close to UKK and it becomes harder to solve (3.15) numerically.
11Dilaton’s and 4-form flux’s profiles are the same as in the confined phase.
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It then results in the DBI action12 of D8-D8

SDBI = −N
∫

dUU4

√

f(U)(∂Ux4)2 +

(

R

U

)3

(1 + f(U)(∂Ua3)2)) (4.4)

where N and a3 are defined as for the confined phase. However, the Chern-Simon action

is the same as (3.6).

Since the U -direction is now no longer caped as in the confined phase but the τ -

direction is, it is then possible for the D8-D8 to disjoin as temperature goes high enough.

This indicates the chiral symmetry will restore in the high temperature [15]. With this

mind we solve the equations of motion.

The equation of motion for a3 is

∂Ua3 = − nb

UR3

√

√

√

√

√

(∂Ux4)2 +
(

R
U

)3 1
f(U)

f(U) − n2
b

U5R3

, (4.5)

and the one for x4 is

(∂Ux
4)2 =

(R
U )3f−1CT

G(U) − CT
(4.6)

with

G(U) ≡ U8

(

f(U) − n2
b

U5R3

)

(4.7)

and the integration constant CT is related to the proper cusp angle θc as follows

CT ≡ U8
c

(

f(Uc) −
n2

b

U5
cR

3

)

sin2 θc. (4.8)

For the chiral symmetry breaking phase the proper cusp angle θc is nonzero and will be

determined as in the confined phase. For the chiral symmetry restoration phase, θc = 0

so that ∂Ux
4 = CT = 0 which describes the parallel D8 and D8-branes. Formally, we can

consider both cases in a unified way, and should be carefully choose θc and the corresponding

quantities when we tune the temperature or UT in numerical calculations.

The Hamiltonian density derived from the DBI action by the Legendre transformation

is

HD8 = N

∫ ∞

Uc

dU U4

√

√

√

√

(

(∂Ux4)2 +

(

R

U

)3 1

f(U)

)

(

f(U) − n2
b

U5R3

)

(4.9)

from which we can obtain the proper D8-D8 tension for the cusp development, that is

fD8 = −NR 3
4U

13
4

c

√

f(Uc) −
n2

b

U5
cR

3
cos θc. (4.10)

12The Lorentzian DBI and Chern-Simon actions are considered until we consider thermodynamics.
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Similarly we can derive the pulling of D6-fluxes from the Chern-Simon action, and

arrive the following force balance condition for the cusp (in the chiral symmetry breaking

phase) which yields

cos2 θc =

n2
b

U5
c R3

f(Uc) − n2
b

U5
c R3

. (4.11)

Along with the condition for the fixed asymptotic separation of D8 and D8, i.e. (3.15), we

can solve Uc(nb) as in the confined phase. Note that requiring cos2 θc ≤ 1, the current

density is bounded as nb ≤ U
5
2
c R

3
2

√

1−(
UT
Uc

)3

2 for a given T , or a bounded temperature as

T ≤ 3
4π (U3

c − 2n2
b

U2
c

)
1
6 for a given nb.

As for the consideration of the thermodynamics of the dual QCD in the grand canonical

ensemble, the Gibbs free energy is the on-shell Euclidean total action and we obtain

Ω(T, µ;nb) = −µnb + F (T, nb) (4.12)

where the chemical potential µ = Na3(∞) as before, and the free energy density

F (T, nb) = N

∫ ∞

Uc

dU
R

3
2U

13
2

(

f(U) − n2
b

U5R3

)

√

f(U)
(

G(U) −C2
T

)

(4.13)

is the same as the on-shell value of Hamiltonian density (4.9) as expected; however, the

nontrivial temperature dependence is implicit in the factor f(U) = 1− U3
T

U3 which is related

to T via (4.2). Also, one can obtain µ(T, nb) through

µ(T, nb) =
dF (T, nb)

dnb
. (4.14)

Phase structures

At high temperature there are three phases: cusp, parallel (chiral symmetry restored

phase), and vacuum (nb = 0). To determine which phase is preferred, we have to compare

their Gibbs free energies. We denote the Gibbs free energy for cusp phase as Ωc, for parallel

one as Ωp and for vacuum as Ωv, and their differences as ∆Ωcv = Ωc−Ωv, ∆Ωcp = Ωc−Ωp,

and ∆Ωpv = Ωp − Ωv, respectively. Also, the chemical potentials for the cusp and parallel

phase are denoted as µc and µp respectively.

In order to perform the numerical computation, it is easier to fix either the temperature

T or the current density nB as what we will do in the following. We will set R = 1 as in

the confined phase.

Fixed T

With UT fixed, the equations of motion are formally similar to the confined phase, we may

expect similar thermodynamical properties as for the confined phase. Indeed, this is the

case and there exists a thermodynamically favored and stable phase in the configuration

space. Therefore, for conciseness, we will not show all the plots but only the relevant ones,

and summarize the main features as following:
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Figure 10: ∆Ωcv v.s. µc (L = 0.7, T ≃ 0.169) Figure 11: ∆Ωcp v.s. µc (L = 0.7, T ≃ 0.169)

Figure 12: ∆Ωcv v.s. µc (L = 0.7, T ≃ 0.207) Figure 13: ∆Ωcp v.s. µc (L = 0.7, T ≃ 0.207)

• For small L (< 0.7 with T ≃ 0.169), we find that ∆Ωcv, ∆Ωcp, ∆Ωpv are all positive,

and µc, µp are negative. Thus, the vacuum phase is the most favored. Also from the

sign of the susceptibility derived from ∂µc(nb,T )
∂nb

and
∂µp(nb,T )

∂nb
, the cusp and parallel

phases are thermodynamically unstable.

• As L is rising, there is a crossover (starting around L = 0.7 with T ≃ 0.169) and

a new branch for both ∆Ωcv and ∆Ωcp appears as in the confined phase but not

for ∆Ωpv. The new branch has negative ∆Ωcv and ∆Ωcp so it suggests that the

cusp phase is thermodynamically favored. Moreover, ∂µc(nb,T )
∂nb

is positive for the new

branch so that the cusp phase is also thermodynamically stable. On the other hand,

there is no corresponding new branch for
∂µp(nb,T )

∂nb
so it implies a thermodynamical

instability of the parallel configuration.

• As L goes higher, we find that there appears no new phase beyond crossover, instead

there exists a critical value of L beyond which there is no physical cusp configuration

for finite nb. This critical value Lc is T -dependent, for example, Lc ≈ 1.28 for

T ≃ 0.131, Lc ≈ 0.99 for T ≃ 0.169, and Lc ≈ 0.82 for T ≃ 0.207. Besides, the new

branch will tend to be thermodynamically unfavored and the chemical potential of

new branch will tend to be negative, although the susceptibility is still positive. This

feature is very different from the confined phase where the crossover will end with a

dominant stable phase after some value of L.

– 17 –



J
H
E
P
0
9
(
2
0
0
8
)
0
4
6

Figure 14: ∆Ωcv v.s. T (L = 0.7, nb = 0.005) Figure 15: Ωcp v.s. T (L = 0.7, nb = 0.005)

Figure 16: ∆Ωpv v.s. T (L = 0.7, nb = 0.005) Figure 17: µc v.s. T (L = 0.7, nb = 0.05)

Figure 18: Ωcv v.s. T (L = 0.7, nb = 0.09) Figure 19: µc v.s. T (L = 0.7, nb = 0.09)

• For higher T, for example L = 0.7 with T ≃ 0.207, we find the similar crossover as for

T ≃ 0.169 case, however, we find that ∆Ωcv turns to be positive so that the vacuum

phase is now the most favored. For more detailed feature, see figure 10–13. Also, as

can be seen above, the critical value Lc decreases as T increases.

• Similar to the confined phase, (though not shown here) there is also a Hagedorn-like

phase transition during crossover with a limiting baryonic current density.

Fixed nb

It is interesting to observe the temperature dependence for the fixed baryonic current
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density. The main features we will summarize in the following:

• For small nb (e.g. nb = 0.005), the cusp phase is thermodynamically unfavored.

However, ∆Ωcv is quite small so that the topologically charged membrane has quite

a chance to sustain itself in the vacuum (See figure 14–15). So is the parallel config-

uration.

It is also interesting to see in figure 16 there is a critical temperature above which

the parallel phase can dominate over the vacuum one, and the chiral symmetry is

restored.

• The thermodynamic relation − µ
T = (∂S

∂n )V,Ufixed relates the chemical potential to the

entropy change, where U , V are the internal energy and volume respectively. There-

fore, negative µ yields positive entropy changing rate, and implies the instability.

The chemical potential µc in figure 17 reaches its local minimum at some temperature

beyond which it grows but never becomes positive for a physical cusp configuration.

That means, the above local minimum of µc yields largest entropy changing rate, and

relatively unstable at some specific temperature. On the other hand, when nb > 0.08

(see figure 19), the chemical potential is either monotonically decreasing (old branch)

or increasing (new branch), so there is no such a special temperature.

• For nb larger than 0.08, a crossover phase appears as shown in figure 18–19 with

a new thermodynamically favored and stable cusp branch as seen from ∆Ωcv < 0,

∆Ωcp < 0 and µc > 0. This new branch is also found in the the fixed T case.

Moreover, in figure 19 there is a limiting temperature where dµ
dT diverges. This is again

of Hagedorn-like behavior and implies the meson dissociation as discussed before.

This deconfinement temperature found here is very close to the chiral symmetry

restoration mentioned above.13

5. Conclusion

In this paper we investigate the QCD vacuum with non-trivial topological charge distri-

bution from its holographic dual theory. We find that there exists thermodynamically

favored and stable phase of mesons in the presence of the topologically charged membranes

in both low and high temperature regimes. This provides the supporting evidence for the

observation of the same topological charge structure in the lattice QCD calculation of [8].

we hope our work will inspire more searches for this new vacuum in the lattice calculation,

and further estimation of its effect on the quark-gluon plasma created in the heavy-ion

collider. Moreover, from the Chern-Simon term of the probe D8-D8-branes, we find that

the topologically charged membranes play the role of baryo-axion, which couples to the

baryonic current density. This is a kind of holographic realization of the baryo-axion pro-

posed in [7]. We have also shown that the Lorentzian configuration of our topologically

13The deconfinement phase of finite temperature Sakai-Sugimoto model was first discussed in [15] as L

is varied, however, there is no Hagedorn-like behavior shown as done here.
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charged membrane is dynamically stable, it is interesting to study the modification of the

meson and baryon spectra in this new QCD vacuum.

We should emphasize that our D6-brane fluxes used as the holographic topologically

charged membranes are quite different from the ones for θ-vacuum proposed in [5]. Our

D6-brane fluxes are sourced by the opposite charged sign-coherent sheet, however, the ones

in [5] are not. It is interesting to point out that the D6-brane fluxes of [5] will couple to

AU via Chern-Simon term of D8-D8 branes. The lowest KK mode of the gauge field AU is

identified as pion [12], however, this source term will not induce any homogeneous chiral

condensate since there is no FU4 term in the DBI action of D8-D8, which is the same reason

for the masslessness of the pion. Instead, the FUi, i = 1, 2, 3 in the DBI action of D8-D8

along with the Chern-Simon source term could induce inhomogeneous chiral condensate

characterized by AU (xi) and the non-trivial θ-vacuum. Further study is needed to make

sure if the configuration is thermodynamically favored or not. This is in contrast to the

recent proposal for the mass deformation of the Sakai-Sugimoto model [17].

Besides, our results show that the thermodynamics of the topologically charged mem-

branes strongly depends on the value of asymptotic separation of D8-D8, and a crossover

happens around some critical asymptotic separations. This critical behavior is quite similar

to the one for the holographic entanglement where the authors in [16] argue this is related

to the Hagedorn spectrum of non-interacting bound states. This is in accordance with our

interpretation of the Hagedorn-like meson dissociation phase transition characterized by the

limiting baryonic current density or temperature. Despite that, we are not sure why such

a critical asymptotic separation exists in our case, it may deserve further study. Also it is

important to understand the meaning of the asymptotic separation in the field theory side.

Finally, we find there is a sign change of chemical potential as we vary the asymptotic

separation of D8-D8 around the crossover which also happens in the BCS-BEC crossover of

some condensed matter system. This analogue motivates the further study to understand

the microscopic relation between the topologically charged membrane and the baryonic

current density and see if there are corresponding BCS and BEC phases.
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